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SUMMARY 

Dynamic and thermal results for developing laminar pulsed flows in a duct are presented. They have been 
investigated by means of a finite difference model. This flow is described in terms of an unsteady pulsed flow 
superimposed on a steady incompressible one with the following main assumptions: a sinusoidal modulation 
for the pulsation and a uniform wall temperature. Results emphasize the importance of this entry region, 
where four simultaneous developments occur: steady-dynamic and thermal-and unsteady-dynamic and 
thermal. 

INTRODUCTION 

Some results for a developing laminar pulsed flow in a duct, undertaken by means of a finite- 
difference method, are presented. This model is specifically built to treat this particular convective 
problem where the flow is described in terms of an unsteady pulsed flow, superimposed on a steady 
incompressible one. Consequently four developing zones: steady dynamic and thermal and 
unsteady dynamic and thermal occur beyond the duct entry. The main hypotheses retained are an 
unsteady flow generated by a sinusoidal axial pressure gradient, and a uniform wall temperature. 

This specific model is supposed to give a better understanding of the complicated process of 
unsteady heat transfer, occurring in this developing zone. Most of the previous works have been 
done under the simplified assumption of a fully developed-dynamic and thermal-steady 
flow.'*2 The proposed model3 is particularly suitable to treat this important convective problem of 
developing flows. 

EQUATIONS AND BOUNDARY CONDITIONS 
I 

The physical problem and its boundary conditions are given in Figure 1. 

Forx=O: u = U  

T =  T ,  

au aT 
F o r t = @  -=-= v = o ,  vx,vt. ar ar 
For r = R; u = v = 0 and T = T, = constant Vx, Vt. 
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Figure 1 .  Boundary conditions 

From these boundary conditions, the equation system can be written as follows: 

au 1 a 
- + - - (ru)  = 0, 
ax r d r  

au t a a - + - - ( r v u ) + - ( u 2 ) =  
at r ar ax 

av i a a 
I + - - (rv2)  + -(uu) = 
at r d r  d X  

Owing to the size of the Pkclet number used in the following developments, it can be assumed 

To solve the equations system, each quantity: u, v, p ,  T is seen in terms of an asymptotic 
that the axial conduction term a2 T / a x 2  is negligible compared to the radial conduction. 

development in a complex form such as 
m 

f(x,...x,)= unfn(e,xl...xp); n e N ,  

with E a small parameter less than unity, called the perturbation parameter, and an a series of 
complex or real coefficients. 

n = O  

Assuming that the axial pressure gradient p i  is given by 

p i  = Re[pio + 
then, as an example, the axial velocity can be written as follows: 

u = uo + &lUlejWf + e2U2e2jmf + ... 
The equations are then identified to the E' and c1 orders. 
For the zeroth order: 

auo 1 a - + - - ( rvo)  = 0, 
ax r d r  
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i a  a 1 
--(ruouo) +-(u$) = --pL0 + v 
r dr ax P 
- - ( r u ~ ) + - ( u o u o ) =  l a  a - ~ p ; o + v [ $ + ~ ~ - ~ ] ,  
r dr ax P 

l a  a 
- - (rug T o )  i- -(uo To)  = r ar ax 

For the first order: 

(9) 

(10) 

au, 1 a 
- + --(rul) = 0, 
ax r a r  

aul 1 a a 1 
--+--[r(u1uo+uoul)]+-(2uoul)= --pil  + v  
at rar ax P 

at r d r  ax P 

~ + - - ( 2 r v o u l ) + - ( u o u l  i a  a + u l u o ) =  --pil 1 + .[~+~3-~], ( 1 1 )  

(12) 
aT, 1 a a 
- + --[r(ul To  + T,uo)] + -(uoT, + u1 To) = "[ %r$ + !T?]. at r a r  ax PCP r ar 

As usually done, these equations have been reduced by introducing the different dimensionless 
quantities 

r* = r/R, x* = x/R,  
u* = u p ,  u* = lqu, 

as well as 

f2 = o R 2 / v ,  O* = (T  - T,)/(Tw - T,), 
Re = U R / v  and Pe = RePr 

where * will be omitted later, in order to simplify the formulation. 

NUMERICAL SCHEME 

The resolution method is close to those classical ones given in literature but three main changes 
are adopted. 

1. Equation (2) gives an approximate value for ui+' and pi{+' by means of a volumetric rate 
condition, such as 

liz = 2zriAriui = constant 

from an arbitrary value given to the axial pressure gradient. 
2. Equation (1) is used here as a refinement for the axial velocity and for the computation of the 
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radial velocity until a convergence criterion is verified: 

l(uj+ 1)" - (uj+ l l n +  1 < = 10- 3 

with n being the iteration order 

be useless for this convective study. 
3. Equation(3) is only used to give the radial pressure gradient for the velocity field, and so could 

This new method specifically built to treat this convective problem greatly simplifies the 
resolution, and consequently reduces the time computation. 

For the finite difference resolution, the different functions are calculated with centred steps 
along the axis and fractional steps along the radius. To describe the progression along the axis 
a predicting-correcting method has been used. More details are given in Reference 3. As an 
example the discretized versions of equation (2)  for the zeroth (steady) and the first order 
(unsteady) are given by 

u;;; + uj+' .;+1 + u::; 
~ [ r i + 1 / 2 u ~ + 1 / 2 (  riAri 2 )-ri-1/2u!-1/2 2 

RESULTS 

For the zeroth order-steady flow-the dynamic and thermal developing regimes are in good 
agreement with the results of Langhaar4 and K a y ~ . ~  The small discrepancy between these two 
models and the present one can be devoted to the radial velocity component, not taken into 
account in these previous analyses. In a different way, Ulrichson and Schimitz6 have deduced the 
radial velocity from the continuity equation and a linearized axial momentum equation which does 
not contribute to a real accuracy for the velocity field computation. 

For the first order-unsteady flow-Figures 2-4 give the unsteady axial velocity u,(r*, x*, t )  
versus r* for different cot values during the pulsation period; the Reynolds number and the fre- 
quency are constant and equal respectively to Re = 2 x lo3, R = 100% for three given x* values: 22, 
40 and 176. These curves confirm the annular effect experimentally described by Richardson and 
Tyler.' This effect is particularly intense in the entry region (i.e. x* = 22) and decreases progres- 
sively with increasing x*, until the fully steady developed zone, where this effect has disappeared. 
The maximum for the axial velocity amplitude is located near the wall, and not on the centre 



u, 
Re 2.10' 

Figure 2. Unsteady axial velocity profiles x* = 22 

"7 

Re = 2.10' 

A = 100 n : X' = 40 

Figure 3. Unsteady axial velocity profiles x* = 40 
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Re = 2 . 1 0 ~  

n = l o a n  t 

Figure 4. Unsteady axial velocity profiles x* = 176 

Figure 5. Maximum amplitude evolution for the axial velocity 
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axis as for the steady flow. It can be noted that the unsteady velocity component in the main 
core of the flow 0 6 r < 0.5, is nearly negligible, whereas the effect of the pulsation is mainly 
located in the region 0.5 < r < 1, near the wall. 

In Figure 5 the axial evolution for the maximum amplitude uIM versus x* is shown for 
different pulsation frequencies. These curves confirm that the maximum amplitude for u1 decreases 
when the frequency increases. This last result was already depicted in the fully developed region 
by Uchida.2 However, in the present study concerning the developing zone, the longitudinal 
evolution for the unsteady axial velocity is not continuously decreasing and can be depicted as 
a periodical damping phenomenon when progressing inside the tube. The axial length of this 
periodical damping is inversely proportional to the frequency. The maximum amplitude for u1 
is closer to the tube inlet when the frequency increases. As an example, for a low frequency 
S Z =  lox the extremum for uIM is located far away from the tube inlet: x* = 130, whereas this 
extremum for a higher frequency SZ = lOOn is near the tube inlet: x* = 12. This induces the 
following fact: there is a non-negligible annular effect for the unsteady velocity in the developing 
region, where the fluid is in organization until the fully developed zone. The location of the 
extremum depends on the frequency. 

x* 
0 . 2  (1 b 22 

v 40 1 m 8 5  

v 175 

~ 

Re =woo 
100 n 

I 

Figure 6. Unsteady velocity modulus Re = 1.5 x lo3 



I u1
l 

I 
I 

I 
I 

X"
 

0
 
.2

 

A
 

2
2

 

v
4

0
 

85
 

Re
 = 2

.1
0'

 

10
0 

n 

2 

/
 

I 
I 

\I 

Fi
gu

re
 7

. 
U

ns
te

ad
y 

ve
lo

ci
ty

 m
od
ul
us
 R

e 
=

 2
 x

 L
O3
 

I 
I 

I 
1 

I 
P

A
. 

;
i

 
$

I 
I
 I
 , I I
 

I I I 
t 

I 
1

- 
? 

X
" 

I
 I I 

0
 .

2
 

A 
22

 

v
 4

0
 

I 

8
5

 
R

e 
z 

3.
10

' 
I '

/
 

3 
v
 1

75
 

10
0 
n 

1.2
 

1.4
 

1.6
 

1.
8 

r*
 

Fi
gu

re
 8

. 
U

ns
te

ad
y 

ve
lo

ci
ty

 m
od

ul
us

 R
e 
=

 3
 x

 l
o3

 



DEVELOPING LAMINAR UNSTEADY FLOW 753 

To complete the dynamic description Figures 6-8 represent the unsteady velocity modulus 
versus r* for the same frequency R = 1OO.n and three Reynolds number: Re = 1500, Re = 2000, 
Re = 3000. As previously stated for the first section, immediately after the entry, x* = 0.2, the 
different Iul 1 values remain constant whatever the Reynolds number is. Beyond the section 
x* = 0-2 and for the same downstream section, I u1 I increases with the Reynolds number. This 
effect is more particularly significant for the maximum amplitude of the annular effect. These 
Figures underline the importance of the unsteady amplitude velocity, and this, more precisely 
near the entry. The damping of these amplitudes is fast when moving with x* positive. The 
modulus ratio for R e = 2  x los, R =  1OO.n: Iullx,=22//u11x*=175 is equal to 31. 

This indicates that, near the entry, dynamic fluctuation amplitudes are 31 times greater than 
these fluctuations amplitudes obtained in the fully developed region. This suggests the existence 
of an unsteady stress which could lead to a non-negligible effect, when averaged over a period. 
Significant consequences of such stresses may be expected in the first flow sections (local strains 
in fluid-structure interactions.. .). More generally, these effects could be generated not only by 
a periodic pressure gradient, but also by a sequential accident such as a sudden head loss. The 
particular significance of these unsteady stresses could result from an adequacy of the physical 
properties, the dynamic parameters of the flow and the unsteady perturbation frequency. 

In the same way, the fluid field temperature has been investigated. The unsteady temperature 
is expressed as follows: 

Bl(x*, r*, R, t )  = z$,(x*, r*, R)cos[wt + I&*, r*, R)]. 

Figures 9-1 1 give the unsteady temperature radial profiles for three sections: x* = 22,40 and 

n = s o  n 
x' = 22 

Figure 9. Unsteady temperature profiles x* = 22 



Re = 2 . 1 0 ~  

Figure 10. Unsteady temperature profiles x* = 40 

Re = 2.10~ 

Figure 1 1 .  Unsteady temperature profiles x* = 176 
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176; and Pr = 0 7 3 ,  Re = 2 x lo3, R = 5071. From a general point of view, it can be observed that 
the maximum amplitude does not coincide with the main axis, as it does for the steady temperature 
profile. This annular effect, not previously depicted, should lead to a new description for heat 
transfer phenomena between the wall and the fluid. For this choosen frequency (5071) a progressive 
amplification for the unsteady temperature amplitude exists from the entry section x* = 0, all 
along the axial co-ordinate, until a maximum is obtained. Thereafter these amplitudes decrease. 
Simultaneously, when progressing in the tube from x* = 0, the effect of pulsation on the fluid 
field is not only located in the region 0.5 d r d 1 but extends all over the corresponding section: 
the radial position of the maximum amplitude moves from the neighbourhood of the wall towards 
the central axis. To obtain a better understanding, the thermal fluid field has been studied by 
the use of the unsteady temperature modulus. Figures 12-15 represent l6,(t)l versus r* for 
SZ = 1071, 3571, 5071, 100n; Pr = 0.73 and Re = 2 x lo3. 

The previous remarks given on annular effect evolution remain valid. The growth of the 
unsteady thermal fluid field in each section is increasing from the low frequency case: 1071 until 
3571, and then decreases when the frequency increases. In other words, it appears that for some 
given physical conditions of the flow (Pr, Re, .  , .) there should exist an optimum in frequency 
leading to greater thermal unsteady effects in the entry region. Figure 15 reveals the importance 
of the unsteady temperature modulus near the duct entry by comparison with those obtained 
in the fully developed region: 101Mlx*=40//81MIx*= , 7 5  is equal to 5.47 for Re = 2 x lo3, Pr = 0.73, 
R = 10071. This ratio is equal to 23, for a higher Prandtl number (Pr = 1.74) with the same Re 

Figure 12. Unsteady temperature modulus R = 1On 
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Figure 13. Unsteady temperature modulus R = 3571 

Re = 2.10' 

50 n 
Pr = .73 

Figure 14. Unsteady temperature modulus Q = 5071 



Figure 15. Unsteady temperature modulus R = lOOn 

Figure 16. Maximum amplitude evolution for the axial temperature 
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and R conditions. It shows, as for the dynamic study, the existence of a thermal stress in the 
first steps of the developing flow. 

If we try to summarize the previous thermal results by examining the maximum amplitude 
for le,(t)l versus the longitudinal co-ordinate, Figure 16 provides a better analysis of the thermal 
amplitude longitudinal damping. Each curve presents a maximum and a decrease from this 
maximum. Moreover we can observe if the frequency increases: 

(a) the maximum for lOlM1 is more important 
(b) this maximum is closer to the entry section 
(c) the damping for lOlM1 is faster. 

It can be noted that there is no periodic damping as previously shown for the unsteady axial 
velocity. 

CONCLUSION 

Some results of a numerical model describing the simultaneous dynamic and thermal develop- 
ments of an unsteady ducted flow are presented. With the assumptions of a laminar regime and 
an incompressible viscous flow, the influence of a periodic axial pressure gradient is mainly 
studied in the developing region for different parameter ranges (Reynolds and Prandtl numbers, 
frequency) and a uniform wall temperature. The results obtained give some precision on those 
previously shown on the developing steady and fully developed unsteady flows. They particularly 
show the importance of the entry region for the unsteady dynamic and thermal phenomena and 
their longitudinal evolutive progression. 

Then, the evolution of the annular effect (Richardson effect) for the unsteady axial velocities 
is expressed for some variations of the two parameters: Reynolds number and frequency. In a 
general manner, the velocity amplitude maximum, which is located in the vicinity of the wall in 
the first sections, tends to move progressively towards the centre axis; moreover, this maximum 
is periodically damped when progressing with the flow. These fluctuations are fast vanishing from 
the entry to the fully developed zone for higher frequencies. 

In this inlet region, unsteady dynamic effects present large amplitudes with respect to those 
obtained in the fully developed region, i.e. Iu ,  I x * = 2 2 / /  U ,  I x * = 1 7 5  is equal to 31 for Re = 2 x lo3. 
These effects are mainly located in the wall region. This suggests the existence of intense unsteady 
stresses (shear or friction stresses) at the wall. With the model assumptions, these stresses result 
from a periodic modulation of the axial pressure gradient but could be also generated by a 
sudden change with time of the upstream flow pressure as, for instance, a sudden head loss. 
These time-averaged effects could be non-negligible. 

Concerning the developing unsteady thermal fluid field, the model points out an annular effect 
for the temperature profiles with similar properties to those obtained for the corresponding 
velocity effect. However, the longitudinal damping for the temperature maximum presents no 
periodicity. As for the dynamic regime, the unsteady thermal fluid field remains mainly located 
in the wall region for the first sections. Moreover for these first sections, temperature fluctuations 
have larger amplitudes than in the developed region, i.e. lelMIx*=22/lelMlr*=175 is equal to 23 
for R = 100, Pr = 1.74 and Re = 2 x lo3. This leads also to the assumption of unsteady thermal 
stresses at the wall in this entry region. 

The investigated changes for the different parameters (Re, Pr, R) show that there could exist 
an ‘adequacy’ of them, leading to large amplitudes for the unsteady velocity and temperature 
in the entry region if compared to those encountered downstream in the fully developed region. 
This adequacy between the modulation frequency and the dynamic parameters may correspond 
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to the classical resonance phenomenon. Dynamic and, here, thermal consequences of such a 
‘pseudo-resonance’ could be important in the first flow sections, whereas downstream, inertia 
and frictional effects lead to a fluctuation damping. 
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NOMENCLATURE 

axial co-ordinate 
radial co-ordinate 
time 
tube radius 
x / R ;  x = x / D  Re 
r / R  
axial velocity component amplitude 
radial velocity component amplitude 
mean velocity for the fully developed flow 
static pressure 
u/U 
v/U 
dimensionless axial pressure gradient: (dp/dx)* = (dp/dx)/(dp/dx) ,  
dimensionless radial pressure gradient: (dp/dr)* = (ap/dr)(dp/dx), 
fluid thermal conductivity 
specific heat capacity at constant pressure 
Reynolds number (based on radius R )  
Peclet number 
Prandtl number 
mass flow rate 
local fluid temperature 
wall temperature 
duct inlet temperature 
mean fluid temperature in a tube section 
mass density 
dynamic viscosity 
kinematic viscosity 
phase 
pulsation 
dimensionless pulsation: o R 2 / v  
perturbation parameter 
modulation rate 

zeroth order 
first order 

(T  - T m ) / ( T w  - T m )  
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